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Introduction

This work aims to integrate perspectives. 

AI in Criminal Justice 
Applications

Data 
Science Governance

Law
Machine 
Learning



The AI Incarceration Pipeline

★ Predictive policing and surveillance → arrests

★ Risk assessment algorithms → bail, sentencing, and parole

★ Machine testimony → evidence and convictions



Arguments
★ Bias in data is the tip of the iceberg

○ implementation environment

○ correctness metrics and objectives

★ Black-box algorithms violate rights

○ public’s right to access criminal proceedings

○ defendant’s right to face evidence

★ Solutions must be interdisciplinary



Machine Learning
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Predictive Policing
★ Chicago’s heat list (Saunders et al., 2016)

○ did not impact gun violence: algorithm identified 0.74% of homicide victims

○ individuals on list had 39% more interactions with police

○ individuals on list 2.88 times more likely to be arrested for a shooting

○ CPD admitted to using the list to come up with suspects for unsolved shootings

★ Oakland experiment (Lum & Isaac, 2016)
○ drug use is evenly spread; low-income communities of color have 200x more arrests

○ positive feedback loop in popular predictive policing technology PredPol

○ PredPol claims to “eliminate...profiling concerns” (2020)

★ Predictive policing algorithms facilitate bad practices

★ China’s Integrated Joint Operations Platform (IJOP)
○ cameras with facial recognition, WiFi sniffers, license plate numbers, finances, etc. 

○ round-up list for law enforcement visits, detainment,  and political re-education



Predictive Policing → Restorative Justice

★ Police contact is associated with negative mental and physical 

health consequences (Sewell & Jefferson, 2016)

★ Algorithms have the potential to reveal bias, help allocate 

resources to repair the harm of dehumanizing police practices



Risk Assessment
★ Virginia Pretrial Risk Assessment study (Danner et al., 2016)

○ race was not used to determine risk

○ there was a statistically significant difference in the algorithm’s predictive ability 

based on race, “with the model performing better for Whites”

○ risk factors were “weighted, summed, and collapsed” to fix the problem

★ Risk assessment is unregulated and inconsistent (Goel et al., 2018) 

★ Removing bias from data (Johndrow & Lum, 2017)
○ identify variables that “encode” for race; transform data to remove dependencies

○ algorithm treats all races “as though they are the same with respect to recidivism”

○ correctness metric is still the likelihood that the defendant will be re-arrested

○ “accurate” risk assessment is a reflection of the system, not the defendant 

★ Rethinking risk → addressing predictors of recidivism



Machine Testimony
★ Massive DNA databases offer probabilistic matches

★ Crime lab analysis is “slapdash” (DiFonzo, 2005) 
○ messy samples and collections

○ fake test results (Mettler, 2017), compensation for conviction (Shaer, 2016)

○ misrepresentation of statistical evidence

★ Black-box machine testimony (Kaufman et al., 2017)

○ violates the public’s right to “petition the government for a redress of 

grievances” (U.S. Const. amend. I)

○ violates the defendant’s right to be “confronted with the witnesses against 

him” (U.S. Const. amend. VI)



Recommendations
★ Use machine learning as a tool to understand systemic bias

★ Shift the focus of implementation of machine learning from punitive to 

restorative practices

★ Law enforcement, crime labs, and courtrooms should create positions for 

people who understand machine learning

★ Machine learning and data science researchers and developers should take 

responsibility for the impact of their creations

★ Government should regulate the use of artificial intelligence in the criminal 

justice setting 
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